Circular coloring and Mycielski construction

نویسندگان

  • Meysam Alishahi
  • Hossein Hajiabolhassan
چکیده

In this paper, we investigate circular chromatic number of Mycielski construction of graphs. It was shown in [20] that t Mycielskian of the Kneser graph KG(m,n) has the same circular chromatic number and chromatic number provided that m + t is an even integer. We prove that if m is large enough, then χ(M (KG(m,n))) = χc(M (KG(m,n))) where M t is t Mycielskian. Also, we consider the generalized Kneser graph KG(m,n, s) and show that there exists a threshold m(n, s, t) such that χ(M (KG(m,n, s))) = χc(M (KG(m,n, s))) for m ≥ m(n, s, t).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circular chromatic number and Mycielski construction

This paper gives a sufficient condition for a graph G to have its circular chromatic number equal its chromatic number. By using this result, we prove that for any integer t ≥ 1, there exists an integer n such that for all k ≥ n χc(M (Kk)) = χ(M (Kk)).

متن کامل

The Circular Chromatic Number of the Mycielski's Graph M

As a natural generalization of chromatic number of a graph, the circular chromatic number of graphs (or the star chromatic number) was introduced by A.Vince in 1988. Let M (G) denote the tth iterated Mycielski graph of G. It was conjectured by Chang, Huang and Zhu(Discrete mathematics,205(1999), 23-37) that for all n ≥ t+2, χc(M (Kn)) = χ(M (Kn)) = n+ t. In 2004, D.D.F. Liu proved the conjectur...

متن کامل

Multi-coloring and Mycielski’s construction

We consider a number of related results taken from two papers – one by W. Lin [1], and the other D. C. Fisher[2]. These articles treat various forms of graph colorings and the famous Mycielski construction. Recall that the Mycielskian μ(G) of a simple graph G is a graph whose chromatic number satisfies χ(μ(G)) = χ(G)+1, but whose largest clique is no larger than the largest clique in G. Extendi...

متن کامل

Circular Chromatic Number and Mycielski Graphs

As a natural generalization of graph coloring, Vince introduced the star chromatic number of a graph G and denoted it by χ∗(G). Later, Zhu called it circular chromatic number and denoted it by χc(G). Let χ(G) be the chromatic number of G. In this paper, it is shown that if the complement of G is non-hamiltonian, then χc(G)=χ(G). Denote by M(G) the Mycielski graph of G. Recursively define Mm(G)=...

متن کامل

Circular chromatic number for iterated Mycielski graphs

For a graph G, let M(G) denote the Mycielski graph of G. The t-th iterated Mycielski graph of G, M(G), is defined recursively by M0(G) = G and M(G)= M(Mt−1(G)) for t ≥ 1. Let χc(G) denote the circular chromatic number of G. We prove two main results: 1) Assume G has a universal vertex x, then χc(M(G)) = χ(M(G)) if χc(G − x) > χ(G − x) − 1/2 and G is not a star, otherwise χc(M(G)) = χ(M(G)) − 1/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 310  شماره 

صفحات  -

تاریخ انتشار 2010